Skip to content

LLAMA2-13B GPTQ rollingbatch deployment guide

In this tutorial, you will use LMI container from DLC to SageMaker and run inference with it.

Please make sure the following permission granted before running the notebook:

  • S3 bucket push access
  • SageMaker access

Step 1: Let's bump up SageMaker and import stuff

%pip install sagemaker --upgrade  --quiet
import boto3
import sagemaker
from sagemaker import Model, image_uris, serializers, deserializers

role = sagemaker.get_execution_role()  # execution role for the endpoint
sess = sagemaker.session.Session()  # sagemaker session for interacting with different AWS APIs
region = sess._region_name  # region name of the current SageMaker Studio environment
account_id = sess.account_id()  # account_id of the current SageMaker Studio environment

Step 2: Start preparing model artifacts

In LMI contianer, we expect some artifacts to help setting up the model - serving.properties (required): Defines the model server settings - model.py (optional): A python file to define the core inference logic - requirements.txt (optional): Any additional pip wheel need to install

Note The original codeGen 2.5 model will not work only if this change has applied. Please apply to your own tokenizer.py when you downloaded the model or wait SalesForce to merge it.

%%writefile serving.properties
engine=MPI
option.model_id=TheBloke/Llama-2-13B-GPTQ
option.tensor_parallel_degree=1
option.max_rolling_batch_size=32
option.rolling_batch=auto
option.quantize=gptq
%%sh
mkdir mymodel
mv serving.properties mymodel/
tar czvf mymodel.tar.gz mymodel/
rm -rf mymodel

Step 3: Start building SageMaker endpoint

In this step, we will build SageMaker endpoint from scratch

Getting the container image URI

Large Model Inference available DLC

image_uri = image_uris.retrieve(
        framework="djl-deepspeed",
        region=sess.boto_session.region_name,
        version="0.27.0"
    )

Upload artifact on S3 and create SageMaker model

s3_code_prefix = "large-model-lmi/code"
bucket = sess.default_bucket()  # bucket to house artifacts
code_artifact = sess.upload_data("mymodel.tar.gz", bucket, s3_code_prefix)
print(f"S3 Code or Model tar ball uploaded to --- > {code_artifact}")

model = Model(image_uri=image_uri, model_data=code_artifact, role=role)

4.2 Create SageMaker endpoint

You need to specify the instance to use and endpoint names

instance_type = "ml.g5.2xlarge"
endpoint_name = sagemaker.utils.name_from_base("lmi-model")

model.deploy(initial_instance_count=1,
             instance_type=instance_type,
             endpoint_name=endpoint_name,
             # container_startup_health_check_timeout=3600
            )

# our requests and responses will be in json format so we specify the serializer and the deserializer
predictor = sagemaker.Predictor(
    endpoint_name=endpoint_name,
    sagemaker_session=sess,
    serializer=serializers.JSONSerializer(),
)

Step 5: Test and benchmark the inference

Let's try to run with an input

predictor.predict(
    {"inputs": "Deep Learning is", "parameters": {"max_new_tokens":128, "do_sample":True}}
)

Clean up the environment

sess.delete_endpoint(endpoint_name)
sess.delete_endpoint_config(endpoint_name)
model.delete_model()